384 research outputs found

    A genome-wide association study demonstrates significant genetic variation for fracture risk in Thoroughbred racehorses

    Get PDF
    Background: Thoroughbred racehorses are subject to non-traumatic distal limb bone fractures that occur during racing and exercise. Susceptibility to fracture may be due to underlying disturbances in bone metabolism which have a genetic cause. Fracture risk has been shown to be heritable in several species but this study is the first genetic analysis of fracture risk in the horse. Results: Fracture cases (n = 269) were horses that sustained catastrophic distal limb fractures while racing on UK racecourses, necessitating euthanasia. Control horses (n = 253) were over 4 years of age, were racing during the same time period as the cases, and had no history of fracture at the time the study was carried out. The horses sampled were bred for both flat and National Hunt (NH) jump racing. 43,417 SNPs were employed to perform a genome-wide association analysis and to estimate the proportion of genetic variance attributable to the SNPs on each chromosome using restricted maximum likelihood (REML). Significant genetic variation associated with fracture risk was found on chromosomes 9, 18, 22 and 31. Three SNPs on chromosome 18 (62.05 Mb – 62.15 Mb) and one SNP on chromosome 1 (14.17 Mb) reached genome-wide significance (p <0.05) in a genome-wide association study (GWAS). Two of the SNPs on ECA 18 were located in a haplotype block containing the gene zinc finger protein 804A (ZNF804A). One haplotype within this block has a protective effect (controls at 1.95 times less risk of fracture than cases, p = 1 × 10-4), while a second haplotype increases fracture risk (cases at 3.39 times higher risk of fracture than controls, p = 0.042). Conclusions: Fracture risk in the Thoroughbred horse is a complex condition with an underlying genetic basis. Multiple genomic regions contribute to susceptibility to fracture risk. This suggests there is the potential to develop SNP-based estimators for genetic risk of fracture in the Thoroughbred racehorse, using methods pioneered in livestock genetics such as genomic selection. This information would be useful to racehorse breeders and owners, enabling them to reduce the risk of injury in their horses

    Walking Technicolor and Electroweak Radiative Corrections

    Full text link
    We examine the effect of walking technicolor dynamics on the electroweak SS parameter and contrast it with the effect of QCD-like technicolor dynamics. Our main tools are the operator product expansion for the high-momentum behavior of the electroweak gauge boson vacuum polarizations and the analyticity of these polarizations which relate their low and high momentum behaviors. We show that whereas in large QCD-like technicolor models SS is large and positive, in walking technicolor models a negative contribution is emphasized, related to the large anomalous dimension of the technifermion condensate. Thus in walking technicolor SS is determined by a large cancellation of two competing effects. This may result in much smaller values of SS than in QCD-like technicolor, although considerable uncertainties are involved. We conclude that it is impossible to rule out walking technicolor based on the present experimental limits on SS and the present theoretical technology.Comment: 22 pages (4 figures, available upon request

    High-Intensity and High-Brightness Source of Moderated Positrons Using a Brilliant gamma Beam

    Full text link
    Presently large efforts are conducted towards the development of highly brilliant gamma beams via Compton back scattering of photons from a high-brilliance electron beam, either on the basis of a normal-conducting electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly ERL's provide an extremely brilliant electron beam, thus enabling to generate highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility, narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2) offers the possibility to produce a high-intensity bright polarized positron beam. Pair production in a face-on irradiated W converter foil (200 micron thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per second, which is four orders of magnitude higher compared to strong radioactive ^22Na sources conventionally used in the laboratory.Using a stack of converter foils and subsequent positron moderation, a high-intensity low-energy beam of moderated positrons can be produced. Two different source setups are presented: a high-brightness positron beam with a diameter as low as 0.2 mm, and a high-intensity beam of 3 x 10^11 moderated positrons per second. Hence, profiting from an improved moderation efficiency, the envisaged positron intensity would exceed that of present high-intensity positron sources by a factor of 100.Comment: 9 pages, 3 figure

    Massive skyrmions in quantum Hall ferromagnets

    Full text link
    We apply the theory of elasticity to study the effects of skyrmion mass on lattice dynamics in quantum Hall systems. We find that massive Skyrme lattices behave like a Wigner crystal in the presence of a uniform perpendicular magnetic field. We make a comparison with the microscopic Hartree-Fock results to characterize the mass of quantum Hall skyrmions at Μ=1\nu=1 and investigate how the low temperature phase of Skyrme lattices may be affected by the skyrmion mass.Comment: 6 pages and 2 figure

    Twenty five years after KLS: A celebration of non-equilibrium statistical mechanics

    Full text link
    When Lenz proposed a simple model for phase transitions in magnetism, he couldn't have imagined that the "Ising model" was to become a jewel in field of equilibrium statistical mechanics. Its role spans the spectrum, from a good pedagogical example to a universality class in critical phenomena. A quarter century ago, Katz, Lebowitz and Spohn found a similar treasure. By introducing a seemingly trivial modification to the Ising lattice gas, they took it into the vast realms of non-equilibrium statistical mechanics. An abundant variety of unexpected behavior emerged and caught many of us by surprise. We present a brief review of some of the new insights garnered and some of the outstanding puzzles, as well as speculate on the model's role in the future of non-equilibrium statistical physics.Comment: 3 figures. Proceedings of 100th Statistical Mechanics Meeting, Rutgers, NJ (December, 2008

    Diurnal temperature range as a key predictor of plants’ elevation ranges globally

    Get PDF
    A prominent hypothesis in ecology is that larger species ranges are found in more variable climates because species develop broader environmental tolerances, predicting a positive range size-temperature variability relationship. However, this overlooks the extreme temperatures that variable climates impose on species, with upper or lower thermal limits more likely to be exceeded. Accordingly, we propose the ‘temperature range squeeze’ hypothesis, predicting a negative range size-temperature variability relationship. We test these contrasting predictions by relating 88,000 elevation range sizes of vascular plants in 44 mountains to short- and long-term temperature variation. Consistent with our hypothesis, we find that species’ range size is negatively correlated with diurnal temperature range. Accurate predictions of short-term temperature variation will become increasingly important for extinction risk assessment in the future.Additional co-authors: Jan-Niklas Nuppenau, Panayiotis Trigas, Jonathan P. Price, Carl A. Roland, Andreas H. Schweiger, Patrick Weigelt, Suzette G.A. Flantua and John-Arvid Gryne

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    • 

    corecore